Crystal Structure

Communications

ISSN 0108-2701

Two mixed-metal carboxylate-base adducts

Yong Cui, ${ }^{\text {a }}{ }^{*}$ Xing Zhang, ${ }^{\text {b }}$ Fakun Zheng, ${ }^{\text {b }}$ Jing Ren, ${ }^{\text {a }}$ Gang Chen, ${ }^{\text {a }}$ Yitai Qian ${ }^{\text {a }}$ and Jinshun Huang ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China, and ${ }^{\mathbf{b}}$ State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Fuzhou, Fujian 350002, People's Republic of China
Correspondence e-mail: ycui@ustc.edu.cn

Received 14 July 2000
Accepted 18 July 2000

The crystal structures of hexa- μ-propionato- $1: 2 \kappa^{6} O: O^{\prime} ;-$ $1: 3 \kappa^{6} O: O^{\prime}$-diquinoline- $2 \kappa N, 3 \kappa N$-calcium(II)dizinc(II), [Ca$\left.\mathrm{Zn}_{2}\left(\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{2}\right)_{6}\left(\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{~N}\right)_{2}\right]$, and hexa- μ-pivalato- $1: 2 \kappa^{6} O: O^{\prime} ;-$ $1: 3 \kappa^{6} O: O^{\prime}$-diquinoline- $2 \kappa N, 3 \kappa N$-calcium(II)dicobalt(II), [Ca$\left.\mathrm{Co}_{2}\left(\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{O}_{2}\right)_{6}\left(\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{~N}\right)_{2}\right]$, are described. Both contain a linear array of one $\mathrm{Ca}^{\mathrm{II}}$ ion and two $M^{\mathrm{II}}(M=\mathrm{Zn}, \mathrm{Co})$ ions connected by two sets of three carboxylate ligands in syn-syn bridging modes. The distorted tetrahedral geometry around the M^{II} ion is completed by a quinoline N atom. The central $\mathrm{Ca}^{\mathrm{II}}$ ion occupies a crystallographic inversion centre and is octahedrally coordinated by six carboxyl O atoms in each structure. The $\mathrm{Zn}^{\mathrm{II}} \ldots \mathrm{Ca}^{\mathrm{II}}$ and $\mathrm{Co}^{\mathrm{II}} \ldots \mathrm{Ca}^{\mathrm{II}}$ distances are 3.8504 (9) and 3.7929 (5) \AA, respectively.

Comment

For some time, a type of novel linear trinuclear assembly of general formula [$M^{\mathrm{II}} M_{2}^{\prime \mathrm{II}}\left(\mathrm{O}_{2} \mathrm{CR}\right)_{6} L_{2}$] $\left(M=M^{\prime}=\mathrm{Mn}, \mathrm{Fe}, \mathrm{Co}\right.$, $\mathrm{Zn} ; M^{\prime}=\mathrm{Zn}, M=\mathrm{Mn}, \mathrm{Co}, \mathrm{Ni}, \mathrm{Zn}, \mathrm{Cd}, \mathrm{Mg}, \mathrm{Ca}, \mathrm{Sr}, \mathrm{Ba} ; L$ is a heterocyclic base) has been the subject of considerable attention in the literature (Catterick et al., 1974; Catterick \& Thornton, 1976; Clegg et al., 1985, 1986, 1988, 1989). The first example characterized by single-crystal X-ray diffraction was the cobalt complex $\left[\mathrm{Co}_{3}\left(\mathrm{O}_{2} \mathrm{CPh}\right)_{6}\left(\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{~N}\right)_{2}\right]$ reported by Catterick et al. (1974). In each case, the three divalent metal ions are arranged in a linear array within a centrosymmetric molecule. The ligands L are bound terminally to the outer metal ions, and the carboxylates form bridges between the

(I) $M=\mathrm{Zn}, R=\mathrm{Et}$
(II) $M=\mathrm{Co}, R={ }^{t} \mathrm{Bu}$
central and outer metal ions. Several Schiff base derivatives, such as $\left[\mathrm{Mn}_{3}^{\mathrm{II}}\left(\mathrm{O}_{2} \mathrm{CCH}_{3}\right)_{4}\left(L^{1}\right)_{2}\left(\mathrm{CH}_{3} \mathrm{OH}\right)_{2}\right]$ and $\left[M_{3}^{\mathrm{II}}\left(\mathrm{O}_{2} \mathrm{C}\right.\right.$ $\left.\left.\mathrm{CH}_{3}\right)\left(L^{2}\right)_{2}(\mathrm{dmf})_{2}\right]\left[M=\mathrm{Fe}, \mathrm{Co} ; L^{1}=1,3\right.$-dihydroxy-2-methyl-2-(5-chlorosalicylideamino)propane, $L^{2}=N, N^{\prime}$-bis(salicylidene)-2,2'-dimethylpropylenediamine], have also been synthesized and characterized (Li et al., 1988; Gerli et al., 1991; Tangoulis et al., 1996). These complexes not only provide a wealth of data about steric interactions and spectroscopic and magnetic properties, but can also serve as structural models for biological systems and solid materials.

The title complexes, (I) and (II) (Figs. 1 and 2, respectively), consist of a centrosymmetric linear trinuclear molecule, with

Figure 1
A view of the molecular structure of (I) showing the atom-numbering scheme and 30% probability displacement ellipsoids. Only one component of the disordered C atoms of the propionate groups is shown for clarity. [Symmetry code: $(A)-1-x, 1-y, 1-z$.]

Figure 2
A view of the molecular structure of (II) showing the atom-numbering scheme and 30% probability displacement ellipsoids. [Symmetry code: $(A) \frac{1}{2}-x$, $\frac{1}{2}-y, 1-z$.]
the central $\mathrm{Ca}^{\text {II }}$ ion on a crystallographic inversion centre. Two $M^{\mathrm{II}}(M=\mathrm{Zn}, \mathrm{Co})$ ions are each coordinated by three carboxyl O atoms and a quinoline molecule to form a distorted tetrahedron, whose most distorted angles are $\mathrm{O} 22-\mathrm{Zn}-\mathrm{N}$ of $95.84(13)^{\circ}$ and $\mathrm{O} 12-\mathrm{Co}-\mathrm{N} 1$ of $94.42(12)^{\circ}$. Each terminal M^{II} ion is connected to the central $\mathrm{Ca}^{\mathrm{II}}$ ion by three carboxylate bridges in a syn-syn mode. The $\mathrm{Ca}^{\mathrm{II}}$ ion occupies a slightly distorted octahedron of O atoms, with $\mathrm{Ca}-\mathrm{O}$ bond lengths in the range 2.287 (3) -2.323 (3) \AA for (I) and 2.261 (3) -2.279 (3) \AA for (II), and with all $\mathrm{O}-\mathrm{Ca}-\mathrm{O}$ angles within 4.5° of ideal octahedral values for both (I) and (II). The two structures are therefore similar to those observed for $\left[\mathrm{MZn}_{2}\left(\mathrm{O}_{2} \mathrm{CCH}=\mathrm{CHCH}_{3}\right)_{6}\left(\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{~N}\right)_{2}\right] \quad(M=\mathrm{Ca}, \mathrm{Sr})$ and $\left[\mathrm{BaZn}_{2}\left(\mathrm{O}_{2} \mathrm{CCMe}_{3}\right)_{6}\left(\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{~N}\right)_{2}\right]$ (Clegg et al., 1988, 1989), but are different from that of $\left[\mathrm{MgZn}_{2}\left(\mathrm{O}_{2} \mathrm{CCH}=\mathrm{CHCH}_{3}\right)_{6}\right.$ $\left.\left(\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{~N}\right)_{2}\right]$ (Clegg et al., 1988), where the central $\mathrm{Mg}^{\mathrm{II}}$ ion is linked to each $\mathrm{Zn}^{\text {II }}$ ion by three crotonate bridges: two of these are syn-syn bidentate and the third is monodentate and bridging through only one O atom. The $\mathrm{Zn}-\mathrm{O}$ [1.924 (3)1.951 (3) Å], $\mathrm{Zn}-\mathrm{N}[2.086$ (2) Å] and $\mathrm{Zn} \cdots \mathrm{Ca}[3.8504$ (9) A] distances in (I) are in good agreement with the corresponding values in $\left[\mathrm{CaZn}_{2}\left(\mathrm{O}_{2} \mathrm{CCH}=\mathrm{CHCH}_{3}\right)_{6}\left(\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{~N}\right)_{2}\right](\mathrm{Clegg}$ et al., 1988) and slightly longer than the $\mathrm{Co}-\mathrm{O}[1.904$ (3)1.914 (3) \AA], $\mathrm{Co}-\mathrm{N}[2.065$ (3) \AA] and $\mathrm{Co} \cdots \mathrm{Ca}[3.7929$ (5) \AA] distances in (II) as a consequence of the smaller radius of cobalt. The present $\mathrm{Zn} \cdots \mathrm{Ca}$ and $\mathrm{Co} \cdots \mathrm{Ca}$ distances are considerably longer than the $\mathrm{Zn} \cdots \cdot \mathrm{Mg}$ distance of 3.518 (3) \AA found in MgZn_{2} crotonate (Clegg et al., 1988), but significantly shorter than the corresponding separations in SrZn_{2} crotonate [4.050 (5) \AA; Clegg et al., 1988] and BaZn_{2} pivalate [4.18 (1) Å; Clegg et al., 1989].

Experimental

For the preparation of (I), a mixture of $\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$, Ca$\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$, propionic acid and quinoline (molar ratio 2:1:6:2) in

EtOH was refluxed for 10 h . The resulting solution was allowed to stand in air and colourless crystals were deposited after one week. For the preparation of (II), a mixture of $\mathrm{Co}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}, \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2} \cdot-$ $6 \mathrm{H}_{2} \mathrm{O}$, pivalic acid and quinoline (molar ratio 2:1:6:2) in ethanol was refluxed for 12 h . The resulting solution was allowed to stand in air and purple prismatic crystals were deposited after three days.

Compound (I)

Crystal data

$\left[\mathrm{CaZn}_{2}\left(\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{2}\right)_{6}\left(\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{~N}\right)_{2}\right]$
$M_{r}=867.55$
Monoclinic, $P 2_{1} / n$
$a=8.614$ (2) \AA
$b=19.363$ (4) \AA
$c=12.473$ (3) \AA
$\beta=95.59$ (3) ${ }^{\circ}$
$V=2070.4(7) \AA^{3}$
$Z=2$
$D_{x}=1.392 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 25 reflections
$\theta=1.95-25.00^{\circ}$
$\mu=1.341 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Triangular prism, colourless
$0.15 \times 0.10 \times 0.10 \mathrm{~mm}$

Data collection

Enraf-Nonius CAD-4 diffract-
3007 reflections with $I>2 \sigma(I)$ ometer
ω scans
$\theta_{\text {max }}=25.00$
Absorption correction: empirical φ
$h=0 \rightarrow 10$ scans (Fair, 1990)
$T_{\text {min }}=0.735, T_{\text {max }}=0.875$
$l=-14 \rightarrow 14$
3 standard reflections frequency: 120 min
3633 measured reflections

3633 independent reflections
intensity decay: none

Table 1
Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$ for (I).

$\mathrm{Zn}-\mathrm{O} 12$	$1.924(3)$	$\mathrm{Zn}-\mathrm{N}$	$2.086(3)$
$\mathrm{Zn}-\mathrm{O} 22$	$1.924(3)$	$\mathrm{Ca}-\mathrm{O} 11$	$2.323(3)$
$\mathrm{Zn}-\mathrm{O} 32$	$1.951(3)$	$\mathrm{Ca}-\mathrm{O} 21$	$2.310(3)$
$\mathrm{O} 12-\mathrm{Zn}-\mathrm{O} 22$	$119.41(17)$	$\mathrm{O} 32-\mathrm{Zn}-\mathrm{N}$	$100.44(14)$
$\mathrm{O} 12-\mathrm{Zn}-\mathrm{O} 32$	$116.19(15)$	$\mathrm{O} 11-\mathrm{Ca}-\mathrm{O} 21$	$91.10(13)$
$\mathrm{O} 22-\mathrm{Zn}-\mathrm{O} 32$	$117.04(17)$	$\mathrm{O} 11-\mathrm{Ca}-\mathrm{O} 31$	$85.87(13)$
$\mathrm{O} 12-\mathrm{Zn}-\mathrm{N}$	$101.05(13)$	$\mathrm{O} 21-\mathrm{Ca}-\mathrm{O} 31$	$86.64(14)$
$\mathrm{O} 22-\mathrm{Zn}-\mathrm{N}$	$95.84(13)$		

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.050$
$w R\left(F^{2}\right)=0.155$
$S=1.149$
3633 reflections
238 parameters
H atoms: see below

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.104 P)^{2}\right. \\
& \quad+0.576 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.64 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.33 \mathrm{e}^{-3}
\end{aligned}
$$

Compound (II)

Crystal data

$\left[\mathrm{CaCo}_{2}\left(\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{O}_{2}\right)_{6}\left(\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{~N}\right)_{2}\right]$
$M_{r}=1022.98$
Monoclinic, $C 2 / c$
$a=20.5710$ (5) A
$b=13.9851$ (3) \AA
$c=18.8102$ (4) A
$\beta=103.814$ (7) ${ }^{\circ}$
$V=5254.9(2) \AA^{3}$
$Z=4$
$D_{x}=1.293 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 5832 reflections
$\theta=1.78-25.53^{\circ}$
$\mu=0.787 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Triangular prism, purple
$0.15 \times 0.10 \times 0.10 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector diffractometer
ω scans
Absorption correction: empirical (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.879, T_{\text {max }}=0.932$
12636 measured reflections

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0480 P)^{2} \\
&+5.7771 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.33 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.22 \mathrm{e}^{-3}
\end{aligned}
$$

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.062$
$w R\left(F^{2}\right)=0.135$
$S=1.087$
4742 reflections
295 parameters
H atoms: see below

Table 2
Selected geometric parameters ($\mathrm{A}^{\circ}{ }^{\circ}$) for (II).

$\mathrm{Co}-\mathrm{O} 12$	$1.914(3)$	$\mathrm{Ca}-\mathrm{O} 11$	$2.269(3)$
$\mathrm{Co}-\mathrm{O} 22$	$1.912(3)$	$\mathrm{Ca}-\mathrm{O} 21$	$2.279(3)$
$\mathrm{Co}-\mathrm{O} 32$	$1.904(3)$	$\mathrm{Ca}-\mathrm{O} 31$	$2.261(3)$
$\mathrm{Co}-\mathrm{N} 1$	$2.065(3)$		
			$104.63(13)$
$\mathrm{O} 12-\mathrm{Co}-\mathrm{O} 22$	$118.55(13)$	$\mathrm{O} 32-\mathrm{Co}-\mathrm{N} 1$	$86.43(11)$
$\mathrm{O} 12-\mathrm{Co}-\mathrm{O} 32$	$115.87(14)$	$\mathrm{O} 11-\mathrm{Ca}-\mathrm{O} 21$	$87.54(11)$
$\mathrm{O} 22-\mathrm{Co}-\mathrm{O} 32$	$118.22(14)$	$\mathrm{O} 11-\mathrm{Ca}-\mathrm{O} 31$	$85.74(11)$
$\mathrm{O} 12-\mathrm{Co}-\mathrm{N} 1$	$94.42(12)$	$\mathrm{O} 21-\mathrm{Ca}-\mathrm{O} 31$	
$\mathrm{O} 22-\mathrm{Co}-\mathrm{N} 1$	$98.22(13)$		

In (I), the C21-ethyl and C33-methyl groups are wholly split into two parts, each having a site-occupancy factor of 0.5 . H atoms belonging to the disordered C atoms were not included in the refinement model. Other H atoms were placed geometrically and thereafter refined riding on their parent C atoms; $\mathrm{C}-\mathrm{H}=0.96 \AA$ for methyl, $0.97 \AA$ for methylene and $0.93 \AA$ for aryl, and $U_{\text {iso }}(\mathrm{H})=$ $x U_{\text {eq }}(\mathrm{C})$, where x is 1.5 for methyl H atoms and 1.2 for other H atoms.

For compound (I), data collection: CAD-4 Software (EnrafNonius, 1989); cell refinement: CAD-4 Software; data reduction: MolEN (Fair, 1990); program(s) used to solve structure: SHELXS86 (Sheldrick, 1990); program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). For compound (II), data collection: SMART (Siemens, 1994); cell refinement: SMART and SAINT (Siemens, 1994); data reduction: $X P R E P$ (Siemens, 1994); program(s) used to solve structure: SHELXTL (Siemens, 1994); program(s) used to refine structure: $S H E L X T L$. For both compounds, molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

The authors thank the National Natural Science Foundation of China, the China Postdoctoral Science Foundation and the Wang Kuanchen Postdoctoral Science Foundation for financial support of this work.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BM1424). Services for accessing these data are described at the back of the journal.

References

Catterick, J., Hursthouse, M. B., New, D. B. \& Thornton, P. (1974). J. Chem. Soc. Chem. Commun. pp. 843-844.
Catterick, J. \& Thornton, P. (1976). J. Chem. Soc. Dalton Trans. pp. 1634-1640.
Clegg, W., Hunt, P. A., Straughan, B. P. \& Mendiola, M. A. (1989). J. Chem. Soc. Dalton Trans. pp. 1127-1131.
Clegg, W., Little, I. R. \& Straughan, B. P. (1985). J. Chem. Soc. Chem. Commun. pp. 73-74.
Clegg, W., Little, I. R. \& Straughan, B. P. (1986). J. Chem. Soc. Dalton Trans. pp. 1283-1288.
Clegg, W., Little, I. R. \& Straughan, B. P. (1988). Inorg. Chem. 27, 1916-1923.
Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Fair, C. K. (1990). MolEN. Enraf-Nonius, Delft, The Netherlands.
Gerli, A., Hagen, K. S. \& Marzilli, L. G. (1991). Inorg. Chem. 30, 4673-4676.
Li, X., Kessissoglou, D. P., Kirt, M. L., Bender, C. J. \& Pecoraro, V. L. (1988).
Inorg. Chem. 27, 1-3.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1993). SHELXL93. University of Göttingen, Germany.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Siemens (1994). SMART, SAINT, XPREP and SHELXTL (Version 5). Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Tangoulis, V., Malamatari, D. A., Soulti, K., Stergiou, V., Raptopoulou, C. P., Terzis, A., Kabanos, T. A. \& Kessissoglou, D. P. (1996). Inorg. Chem. 35, 4974-4983.

